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1. INTRODUCTION

Understanding of complex biological processes requires knowledge of the component molecular
elements, as well as the principles that govern the interactions between them in forming higher
ordered structures. We are founding our laboratory studies of CNS development and cell
differentiation on the integrative concept of a genetic network, based on the tenets of genetic
information flow. But first it is important to establish the intellectually challenging principles by
which complex networks of functionally cross-linked elements lead to predictable, higher-ordered
behaviors. To this end we are studying Boolean network models, which exhibit dynamic
properties similar to those of living systems, such as self-organization and cycling. In this model,
genes are conceptualized as binary (on/off) elements interacting within a freely cross-wired
network. The on/off pattern, or state, of the entire network of genes updates itself as the genes
interact, until the system reaches a final state, the attractor. This process of updating represents
the pattern, or trajectory, of gene expression which results in the mature organism or
differentiated cell type, representing analogies of the attractor.

Since trajectories and attractors are specific expressions of the architecture of a particular
system, any experimental strategy must gain access to the states of the biological network. In that
context, PCR (polymerase chain reaction) is being used to measure the expression of a large
variety genes at different time points in a tissue or experimental cell system in order to gain
access to data on trajectories. While many alternative trajectories may be obtained
experimentally during cell and tissue differentiation or responses to perturbation, it is equally
important to development the computational tools to infer genetic network architectures from
such data sets. Here we discuss a heuristic approach to this problem using examples from
Boolean networks as illustrations. Finally, analysis of experimental data is expected to provide
testable hypotheses concerning further interconnections, some of which might not otherwise be
predicted by strict molecular/mechanistic approaches. Especially within light of the massive
genetic tool set generated by the genome projects, one may anticipate that a strategy of large scale
gene expression mapping and genetic signaling network inference may become essential to the
study of complex medical problems such as cancer or tissue regeneration.

                                                
1 Internet contacts: for reprints and related literature, R.S.,  rolands@helix.nih.gov and S.F., sfuhrman@codon.nih.gov; for
details on GeneTool, M.A., manor@santafe.edu; for information on DDLAB (a Boolean network exploration software
package), A.W., wuensche@santafe.edu
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2. PRINCIPLES:
GENE FUNCTION IN DISTRIBUTED PARALLEL PROCESSING NETWORKS

Advances in molecular biological research and biological signal transduction have given us insight
into the fundamental molecular processes of living organisms [1]. DNA has been identified as the
primary information carrying molecule of all life forms. The central biomolecular tenets revolve
around the direction of information flow in biomolecular systems (Fig. 1). For the information
coded in the DNA to be expanded into biological function, individual genes must be activated

and transcribed into a
complementary RNA
molecule (messenger RNA).
While the RNA
macromolecule can fold into
conformations that show
catalytic activity, or specific
binding to other
macromolecules, it appears to
primarily serve as a template
for the translation into a
chain of amino acids, forming
proteins. Proteins can explore
a larger region of structural
space because of the chemical
diversity of the amino acid
building blocks. Finally, many
proteins catalyze biochemical
reactions resulting in a large
variety of organic molecules,
many of which in turn carry

information as intra- or intercellular signaling mediators. All of these macromolecular structures
contain information that defines their specific affinities to one another. These affinities are
exploited in biological signaling and control mechanisms, which span across any of the four
categories of biomolecules shown in Fig. 1. Considering the number of members in each category,
almost endless biomolecular combinations are possible. Exploring biomolecular function through
particular examples is fascinating and has provided us with much basic knowledge on  biological
information processing. However, we may hesitate to expect to uncover all important molecular
interaction because there simply are too many possibilities. While the schematic in Fig. 1 may
appear simple, it implies the mind-boggling complexity of the hardware that underlies biological
computation.

But we would still like to understand how these parts can form higher-ordered functional
wholes, first in principle, then in biological detail. This means that we have to begin integrating
the insights we have gained so far. Let us start by examining the processes responsible for gene
regulation, the origin of biomolecular information flow (Fig. 1). In a simple idealization (Fig. 2), an
input activates a gene (implicitly leading to the formation of a protein), which forms the output.
This output could activate a further gene, which is in turn linked to a another gene, and so forth,
forming a signaling chain. While such signaling chains can already exhibit a significant degree of

                                                
2 Perhaps some readers may perceive the abundant cross-wiring of Fig. 1 as exaggerated. But consider the following
practical examples: Proteins aggregate with one another (multi-protein regulatory complexes) and with their enzymatic
products (signaling molecule receptors, GTP-binding proteins) in regulating the activity of other proteins. Enzymatic
products (e.g. steroids) form complexes with proteins (steroid receptors) that directly bind to DNA and activate genes.
RNA structures directly play an important regulatory role in RNA stability, and can bind to complementary RNA
sequences (antisense RNA) and lead to its elimination. Amino acids, lipids, small sugars and other enzymatic products
act as central signal mediators in inter- and intracellular signaling. We can safely assume that many unforeseen
molecular interactions will be discovered in the future.
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Fig. 1. Biomolecular information flow and feedback regulation2
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complexity (as we
already know from
metabolic reaction
series) they do not
capture what we know
about the combinatorial
regulation of gene
expression. Indeed, the
activation of a gene is a
multigenic process,
involving the
interactions of several
different gene products
with regulatory

structures on the DNA (see [2] for a more in-depth discussion). Furthermore, the product of a
single gene may act pleiotropically, i.e. may participate in several cellular functions because it can
interact with a variety of molecular structures dependent on the context (Fig. 2). Therefore, we
must accept that these molecular processes are tied into complex networks which form the real
basis of the output that we associate with organizational structures such as cells and
multicellular organisms.

How can such complex behavior be sensibly coordinated? One approach to this question
is hardware oriented, meaning that by the careful study of all the molecular structures and all
their possible interactions according to lock-and-key principles, we can take data on these
reduced components and calculate
up the organism in a high-powered
computer (Fig. 3). Perhaps such
thinking is motivated by the
oversimplified idealization of one-
to-one signaling chains (Fig. 2).
However, the scope of data
acquisition may lie beyond our
experimental means (even taking
into account the most generous
estimates), and then may be non-
computable even assuming that we
have a precise representation of the
input.

Alternatively, we may approach this problem from a computational perspective. To this
end, the paradigm of deterministic genetic networks may prove most useful, particularly in
development. Simply stated, the decompression of genetic sequence information in development
(and beyond) may be understood in terms of patterns of coordinate gene expression governing
proliferation and differentiation. Since sequence determines structure, and structure determines
function (Fig. 1), the molecular interactions following gene expression do not account for
additional information. Once the rules of interaction among genes are known, knowledge of all
the intervening mechanistic steps is not absolutely necessary to determine the flow of genetic
information.

A simple modeling language that accounts for the fundamental features of the global
behavior of genetic networks can be found in Boolean networks (Fig. 4; studied by Kauffman, for
overview see [3]). Boolean networks are based on the premise that biological molecular
interactions exhibit a high degree of cooperativity, reflected in sigmoid interaction curves, which
can be modeled by discrete on/off behavior in the limiting case. Essentially, the network
elements, or genes, are either on or off, several of which act together through combinatorial or
Boolean functions in the regulation of a particular element (Fig. 4). Such a simplified model will
enable us to study the behavioral principles of distributed objects in biological systems. This is

simple 
idealization

multigenic 
regulation

single input

single output

multiple inputs

single output

single input

multiple outputs

pleiotropic 
regulation

more realistic idealization

multiple inputs

multiple outputs

genetic 
network

most complete model

Fig. 2. Multigenic & pleiotropic regulation: the basis of genetic networks

P re mise :

“A Gene for Every Funct ion and a Funct ion for Every Gene”

• complete reduction of organism into genes

• determination of protein st ruc tures and activ ities

• mapping of  molecular gene product  interactions

• database assembly of molecular-mechanist ic data?

• synthes is in sum-of-its -parts  computer model?

Fig. 3. A reductionist-mechanistic approach to gene function
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not a trivial question. One may easily be
overwhelmed by the details of “mechanistic”
molecular interactions and wonder how
anything so complex as a living organism may
exhibit stability, reproducibility, perhaps
harmony!

Beyond network models, how can we
gain experimental data on biological networks
that would provide a foundation for detailed
examination? In fact, the basic technology for

the massively parallel analysis of genetic networks exists here and now. Analytical molecular
biological techniques such as PCR (polymerase chain reaction) allow us to detect and precisely
measure the concentration of any nucleic acid in solution [4]. The primary product of a gene is a
nucleic acid, mRNA (messenger RNA). An mRNA isolated from a sample of living tissue
(standard laboratory procedure) can be quantified using PCR, or perhaps in the future by
alternative, equally sensitive nucleic acid hybridization-based approaches (such as DNA chips
[5]). Efforts towards the automation of PCR analysis are being actively pursued [6]. Application
of this technology provides us with a Gene Expression Matrix of a particular state or series of
states of the organism’s genetic network [7]. Perfecting experimental analytical techniques is only
one aspect of genetic network exploration. Equally important will be the interpretation of the
volumes of acquired data. How much of the genetic network architecture could possibly be
extracted from a Gene Expression Matrix? Boolean networks allow us to examine this question.

3. STATES, TRAJECTORIES AND ATTRACTORS IN BOOLEAN NETWORKS

The elementary structure of Boolean networks is based on an analogy to biomolecular
interactions, genes turning each other on and off through complex combinatorial functions in a
richly cross-wired network. Assuming the model is valid, we should expect that computation
within a Boolean network produces structures analogous to higher ordered distributed biological
processes and objects, such as cells (characterized by a “final”, stable state of the network) , the
program of development, even transdifferentiation processes leading to e.g. cancer.

Following an example of a simple Boolean network, “Genet”, will let us examine this
question. Genet consists of 15 elements or “genes” labeled alphabetically. The links between the
genes are shown in the wiring diagram (Fig. 5). According to these connections and the set of
Boolean rules (Fig. 6), the state of the network at Time=t is transformed to the follow-up state at
Time=t+1. The incremental calculation from state to
state generates a trajectory. A set of 4 trajectories is
shown in Fig. 7. Trajectory I begins with all elements
off, except for “O”, which is on. Therefore,
according to the rule in Fig. 6, M must be turned on
in the next iteration (time 2) because it responds to
N or O. Each of the following states of the network
is computed analogously (one can confirm this by

  

Genetic Network <-> Boolean Network

genotype / DNA <-> wiring and rules

gene <-> element

expression pattern <-> state

development <-> trajectory

mature cell <-> attractor

    Fig. 4. Genetic and Boolean network terminology

A B C D E F G H I J K L M N O

A B C D E F G H I J K L M N O

Time=t

Time=t+1

Fig. 5. Wiring diagram of a Boolean network: “Genet”

gene Boolean rule
A F and H and J
B G and H and J
C F and H and I
D G and H and I
E H and I and J
F I and J and K and L and (not G)
G I and J and K and L and (not O)
H I and J and K and L
I J and K and L
J K and L
K K or L
L L or M
M N or O
N N and O
O N and O and (not E)

Fig. 6. Boolean rules of Genet
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calculating each step manually following the
rules in Fig. 6). Interestingly, at time=10, the
same state as at time=9 is computed; Genet
has reached a “point attractor”. Analogous
behavior is also observed in trajectories, II, III
and IV (Fig. 7). Although II, III and IV begin at
different starting states, each trajectory falls
into an attractor after 3 iterations. In fact, they
share the same attractor, the all “off” state,
which means that they are all part of the same
“basin of attraction”( (for detailed exploration
of attractor basins see [8] and Boolean network
structures see [9]).

The complete basin of attraction is
depicted in Fig. 8 (graphics generated using the
DDLAB software [10]). Each end point of a
radius and each node represent a particular
state, while each set of connected lines leading
to the center, the attractor, represents a
trajectory (trajectories II, III and IV are labeled
specifically). In essence, the graph depicts a set
of centripetal trajectories, covering 1024 of the
total of 32768 states of Genet. A simple
argument explains why each state in a Boolean

network must lead to an attractor. Each network has a finite number of states, precisely 2N, N
being the number of elements in the network. Since each state leads exactly to one follow-up
state, after a maximal number
of 2N steps (usually much
less), a state must be reached
that the network has
occupied before. Once that
occurs, the attractor has been
reached and the network will
oscillate within this cycle or
point ad infinitum.

Genet illustrates how
the state space that the
network occupies is reduced
as time progresses. Note this
is exactly the behavior we see
in living organisms. Of all the
possible states a genetic
network could produce, only
a small subset is realized. For
instance, in metazoan
development the genetic
network follows a determined
program leading to e.g.
several hundred cell types in
higher vertebrates. This
program can be likened to a
trajectory, while the end-
points represent attractors.
While a myriad of gene

gene name

trajectory time A B C D E F G H I J K L M N O

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

I 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

5 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

7 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

8 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0

9 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0

1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0

1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0

I I 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0

III 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0

I V 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 7. Four selected trajectories of Genet

1

2

3

1

1

2

2
III

II

IV

Fig. 8. Basin of the “all off” attractor capturing 1024 states of the network
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activation states are possible, only very few are realized, i.e. the number of cell types actually
observed is only a small fraction of the number that could in principle be created by a network of
such size [11]. Of course, these analogies go beyond genetic networks and also apply to even
more complex neural networks, where trajectories and attractors find analogies to pattern
recognition, memories etc. [9]; after all, we often and appropriately speak of “mental states”.
Furthermore, nodes in trajectories into which a high number of states flow, or attractors with
reasonably large basins of attraction, offer stability (discussed in [2]). Many changes in the value
of an element, as could be introduced by noise or a slight perturbation, will likely generate a state
which is part of a trajectory leading back to the attractor. Therefore, while one may have
intuitively found it perplexing that the actions of so many elements can be coordinated into
organized behavior, the intertwined nature of the network demonstrates that stability and
finality are actually inherent features, and probably the great advantage, of such complex
distributed structures as modeled by random Boolean networks.

4. FIRST-ORDER HEURISTIC NETWORK ANALYSIS:
 IDENTIFICATION OF PRIMARY FUNCTIONAL CONNECTIONS

We have discussed Boolean nets as a tool for understanding the computational principles of
genetic networks, and how higher-ordered structures emerge and are maintained in richly
interlinked systems. But how can we begin to understand the structure of any particular living
genetic network? First of all, we must map the states and trajectories of a biological genetic
network, which we are measuring today via the Gene
Expression Matrix (discussed above). The next challenge is
the extraction of the network architecture from the Gene
Expression Matrix. This can be explored at several levels of
analysis.

As a first step, one may look for similarities between
trajectories of individual genes.  We expect that genes which
a) operate together (e.g. proteins that are part of a metabolic
pathway or signaling network) or b) are members of the
same gene sequence family (most genes are members of larger
evolutionary families), will be regulated in a largely parallel
fashion and therefore should exhibit overlapping trajectories.
This type of relationship was anticipated in the construction
of the Genet example; note the overlap in wiring between
many of its elements (Figs. 6 and 7). Essentially, the
elements of Genet fall into 4 or 5 major clusters (encircled by
dotted lines) according to analysis of their wiring as shown
in Fig. 9a (the tree was computed with FITCH3 [12] from the
15 gene × 15 gene distance matrix of relative shared wiring).
Can we gain access to this information without a priori
knowledge of the wiring diagram? To this end, we compared
a set of trajectories of Genet, covering a total of 73 states,
using the Euclidean distance measure: each gene is a point in
73-dimensional parameter space; therefore the Euclidean
distance between a pair of points (genes) is simply the
square root of the sum of the squared distances in each
dimension (time). The pair-wise Euclidean distances were
entered into a 15 gene × 15 gene distance matrix, which
served as the input for the FITCH3 clustering algorithm,
                                                
3 FITCH is a clustering algorithm from the PHYLIP package of Joe Felsenstein and can be obtained through the internet:
http://evolution.genetics.washington.edu/phylip.html. We used the default parameters and a power of 0 for error
weighting.
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producing the tree shown in Fig. 9b. The clusters of the tree of trajectories bear close resemblance
to those obtained from the direct analysis of wiring shown in Fig. 9a. The major outlier in this
group is gene F, which is to be expected since F is inhibited by G, even though they otherwise
share the same wiring (see rules, Fig. 6). Therefore whatever activates F and G together will cause
an immediately following inhibition of F, leading to a bifurcation of F’s and G’s trajectories.
However, alternative distance measures such as mutual information may be able to capture the
relationship between F and G. We conclude that cluster analysis (Euclidean distance measure) of
trajectories provides us with a good first approximation of which genes share major inputs.

5. HIGHER-LEVEL HEURISTIC NETWORK ANALYSIS:
 COMPLETE REVERSE ENGINEERING OF BOOLEAN NETWORKS

We have introduced a straightforward, first-order genetic network analysis which identifies genes
having common inputs. More sophisticated techniques are required to go further and identify
input source, multiple inputs and their combinatorial rules, culminating in the extraction of the
complete network architecture. Again, Boolean networks offer a testing ground for such a
strategy.

A Boolean network is determined by simply defined wiring and rules. Therefore the task
of reverse engineering a network from a set of trajectories is straightforward: find a subset of
wiring and Boolean rules that
produces the required trajectory.
But there may be many subsets,
many networks that produce a
small set of trajectories. Here it is
important to introduce an
optimization criterion to select a
“minimal” network that will
satisfy the input trajectories.

To this end, we are
developing the GeneTool
algorithm. GeneTool attempts to
reverse-engineer the target genetic
network based on a very small set
of observed trajectories and some
heuristic knowledge about the
nature of the network. We also
require criteria of minimality to
reduce the number, and
consequently increase the
plausibility of the candidate
solution(s). To date we have
concentrated on minimizing the
wiring per gene (i.e. reducing the
set of genes responsible for the
regulation of every gene in the
network). Other minimization
criteria are possible (e.g. logic gate
minimization, as performed by
computer chip designers,
promises to be another exciting
alternative [13]).
                                                
4 The figures shown here were generated using an earlier version of the GeneTool . The algorithm described in this paper
produces even  smaller networks.

Fig. 10. Reverse engineering of Genet using the GeneTool algorithm4
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We are currently investigating
the following general approach: for
every gene G, we find a minimal
subset of genes S{G}, for which we
can write a rule table taking the
values of S{G} at time t and
producing the observed state of G at
time t+1. In practice, this means that
for every candidate set S{G}, we fill
in the rule table based on the
observed state transitions until either
we find an inconsistency, or we have
managed to explain all the observed
data. If, upon termination, we have
incomplete rule tables, we complete
them according to some biologically-
motivated heuristic (one such
heuristic is to maximize the number
of canalizing inputs [14]).

We have tested the
performance of GeneTool on our
Genet model network, and found the
results in some ways surprising. As
expected, GeneTool was able to
generate a minimal Boolean network
for all the trajectories provided, and
furthermore, the accuracy of the
match with the original network
increased with the number of state-
transitions analyzed. However, while
the wiring diagram became
progressively more dense with
increasing number of test trajectories
(Fig. 10), the global dynamics of
Genet were generally outlined
following only 5 sets of trajectories as
shown in (Fig. 11). In detail, following
a single transient (shown in upper
right of Fig. 10), a minimal network
was extracted which accounted for
the trajectory and produced a total
of 37 different basins of attraction
(top panel, Fig. 11). After a set of 5
transients, the wiring density

increased marginally (Fig. 10), but the basins of attraction were reduced to three. In fact, the
attractors corresponded to the exact solution of the network, and even their size and basic
structure closely matched the original network’s (Fig. 11). Examining additional trajectories led to
a closer approximation of the exact network wiring and rules (not shown) until the perfect match
was found after 26 sets of transients5 (Fig. 10). But only a small subset of trajectories was
necessary to capture the essential features of the global dynamics of the network (Fig. 11). As
discussed above, Genet was designed with the redundancy in mind that we expect of biological

                                                
5 Once we had established a convergence towards the original network’s basin of attraction field, we began to feed the
transients non-randomly, thus shortening the number of iterations required.

Fig. 11. Global dynamics of reverse engineered networks
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networks based on sequence and functional gene families. Reverse engineering of Genet using
GeneTool may be reason for optimism about practical applications to biological networks, for
which we can only expect partial data sets as provided by the Gene Expression Matrix. Even
forgoing a “perfect match”, reverse engineered network approximations may exhibit useful
predictive powers.

6. CONCLUSION

The success of the molecular reductionistic approach in the life sciences is providing us with an
ever increasing toolbox of genes and insights into individual molecular processes that underlie
biological function. Scientific explanations of a particular phenomenon amount to algorithmic
compression, trying to find a simple unifying rule to explain a variety of behaviors. But this
should not result in the expectation of finding “point causes” for important biological processes;
one cannot today ignore the network nature of biological function. But how can we seek
simplifying explanations in the face of such complexity? Using the analogy of Boolean networks,
we find that higher order processes can be explained in terms of trajectories and attractors
generated by the interactions of the system’s fundamental elements. We have introduced genetic
networks as a paradigm in which today’s technology will allow us to explore living networks. In
principle, measurement and analysis of the Gene Expression Matrix should enable us to find the
major causal links between genes (Fig. 12). Methods such as cluster analysis and reverse network
engineering, as validated in principle on Boolean network models, are a beginning for a systematic
program of network architecture extraction. In one way or another, the strategy outlined in Fig. 12
will likely play an important role in “Functional Genomics”, the new frontier following the
Human Genome Project.

Of course, many important problems must still be solved. While the idealizations of
Boolean networks help us provide a crisp modeling scheme with which we can study the
principles of genetic networks and explore methods of data analysis, the biological reality is more
diffuse. An important step will be to move away from the binary idealization in order to analyze
experimental data which is measured on a continuous scale. Artificial neural network systems
tailored to genetic network analysis could make important contributions here. Furthermore, the
precise details of the genetic network may elude us for some time, since it is not possible to
measure system states in single cells; we are restricted to measuring the aggregate Gene
Expression Matrix averaged over several thousands or millions of cells. Nevertheless, important
regulatory pathways should be identifiable even at such a course level of measurement.
Furthermore, since we cannot hope to identify all important molecular interactions, a mechanism-

Premise:

“Gene function is distributed across a parallel processing network.”

1.identify organism’s genes, genetic network elements

2.determine network states (gene expression patterns)

3.mapping of alternative trajectories and attractors

4.parallel trajectories suggest shared inputs

5.confined perturbation waves determine temporal links
6.computational reverse engineering of network

Fig. 12. A heuristic, integrative systems strategy for deciphering gene function
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independent approach of Gene Expression Mapping followed by advanced network analysis
should allow the identification of significant functional links otherwise not accessible.

Perhaps it is time to clearly formulate the general goal of the endeavors schematized in
Fig. 12. While a complete understanding of an organism in molecular network terms may be
precluded, the construction of approximate models based on analysis of large data sets could
permit the formulation of profound predictions accessible by no other means. Model predictions
are testable using today’s technologies. Inadequate models can be improved by incorporating new
data previously beyond their grasp. While this task may appear overwhelming at first glance,
advances in automation of experimental data acquisition, analytical network software, and a
concomitant increase in computing power will make this approach feasible, perhaps unavoidable.
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